

Effective Way to Disinfect

OZONE POWERED DISINFECTION CABINET

High Disinfection Capacity.

Easy and Fast Installation.

Modular Design.

On-site Ozone generation with advanced technology.

User Friendly;

No need for an operator.

No need for any chemicals.

Low energy consumption.

Advantages of Ozone Sanitation?

• Most Effective Antimicrobial Agent

Unlike a lot of other disinfection sterilization technologies, in the act of literally taking a cell membrane apart, in destroying the cell, it converts itself back to oxygen which is a very benign waste product.

• Suitable For Everyday Clothing

No liquid chemicals is sprayed during disinfection. Ozone does not affect your everyday clothing.

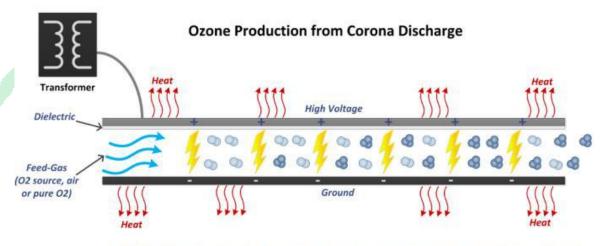
No Extra Cost for Chemicals

Ozone is generated onsite by electricity, and thus, there are fewer safety problems associated with shipping and handling.

No Need for Operator

Our product is fully automated.

Effective Way to Disinfect


Ozone, or trioxygen, is an inorganic molecule with the chemical formula O3. It is a pale blue gas with a distinctively pungent smell.

Ozone is produced on-site from the oxygen in ambient air, an abundant free-of-cost raw material. Nothing to purchase, transport and store. No handling and refills needed. No waste. No residues.

Ozone is produced on-site from the oxygen in ambient air, an abundant free-of-cost raw material. Nothing to purchase, transport and store. No handling and refills needed. No waste. No residues.

How Is It Produced?

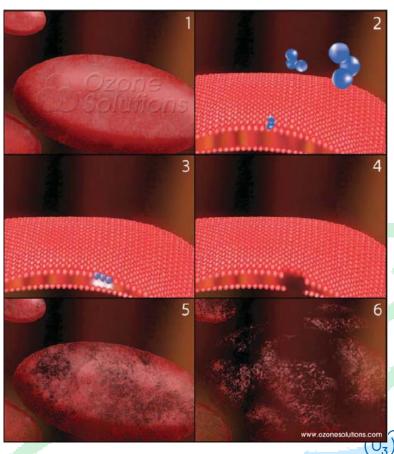
Ozone is formed by applying electrical energy to the oxygen molecule, which splits some portion of those oxygen molecules in half, into singlets of O. Those single O atoms attach to O2 for a very short time period, becoming O3, which has a half-life in its natural state of about 22 minutes before, on its own, it converts back to oxygen by releasing its singlet of O. During that active phase as ozone, it reacts to any organic compound by oxidizing double carbon bonds.

Ozone is formed via an electrical discharge that is diffused over an area using a dielectric to create a corona discharge. Oxygen passed through this corona discharge is converted to ozone.

Did You Know?

 O_3

In one single lightning 136 kg of ozone is produced.



Effective Way to Disinfect

- 1. Healty Bacillus bacteria.
- Ozone approaches to bacteria's cell Wall which is vitally important for bacteria.
- 3. When ozone molecule ineracts with cell wall, it makes an oxidative explosion.
- Ozone molecule takes away molecules of cell wall.
- Cell wall gets more damages while ozone molecules making oxidative explosions with cell wall.
- Finally, bacteria can not withstand to ozone attacks and dissolves to CO2 and H2O.

This process only takes 10 seconds.

This process is much faster in killing viruses. Virus have less layers to penetrate so ozone treatment is more effective on virus.

Good To Know:

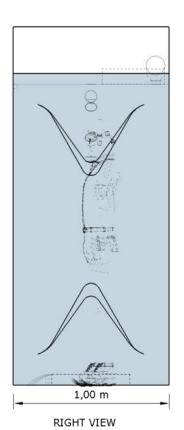
Some viruses are more susceptible to ozone's action than others. It has been found that lipid-enveloped viruses are the most sensitive, such as **COVID-19**.

Effective Way to Disinfect

Ozone disenfectant is effective on all kinds of patogens.

Virus	Mold	Bacteria
Bacteriophage f2	Aspergillus Niger	Bacillus Bacteria
Coxsackie Virus A9	B. cereus (spores)	Bacillus Anthracis*1
Coxsackie Virus B5	Botrytis cinerea	Bacillus cereus
Encephalomyocarditis Virus	Clavibacter michiganense	Bacillus subtilis
Enterovirus Virus	Cladosporium	Candida Bacteria
lycopersici	Clostridium Botulinum Spores*2	Clostridium Bacteria
Melonogea	Luminescent Basidiomycetes	Diphtheria Pathogen
GDVII Virus	Vicia Faba progeny	Eberth Bacillus
Hepatitis A virus		Endamoebic Cysts Bacteria
Influenza Virus		Klebs-Loffler Bacillus
Poliovirus type 1		Legionella pneumophila
Rhabdovirus virus		Penicillium Bacteria
Stomatitis Virus		Proteus Bacteria
Vesicular Virus		Pseudomonas Bacteria
Sars Coronavirus		Salmonella Bacteria
Poliomyelitis Virus		Schistosoma Bacteria
		Streptococcus Bacteria
		Virbrio Cholera Bacteria
		Salmonella typhimurium
	Mycobacterium avium	
		Mycobacterium foruitum
		Staphylococci

"Ozone should be adopted as a weapon in the global fight against COVID-19." - ///Zhou Muzhi, Professor, Tokyo Keizai University Head, Cloud River Urban Research Institute///


"No ozone-resistant viruses have been found." - ///James B. Hudson, Manju Sharma & Selvarani Vimalanathan Development of a Practical Method for Using Ozone Gas as a Virus Decontaminating Agent, Ozone: Science & Engineering///

Effective Way to Disinfect

FRONT VIEW

PERSPECTIVE

Technical Details

MODEL#	SIZE WEIGHT (kg) OZONE GENE		OZONE GENERATOR	INSTALLED POWER
4			CAPACITY (gr/hr)	(Watt)
FM-5831	1140x1000x2300mm	120kg	20gr/HR	440 W

FRP Cabinet Modules

Plastic Body Axial Fan

Auto Start/Stop

Two Way Enterance

High Capacity Ozone Generator

Fast Disinfection in seconds

Illuminated Cabinet

360° of Disenfection

Modular Design

Self Disenfecting

Electrical components have CE sign

2 Years of Guarantee

